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Abstract

Cotton is an important textile crop whose gains in production over the last century have been challenged by various diseases. Because
many modern cultivars are susceptible to several pests and pathogens, breeding efforts have included attempts to introgress wild, naturally
resistant germplasm into elite lines. Gossypium stocksii is a wild cotton species native to Africa, which is part of a clade of vastly under-
studied species. Most of what is known about this species comes from pest resistance surveys and/or breeding efforts, which suggests that
G. stocksii could be a valuable reservoir of natural pest resistance. Here, we present a high-quality de novo genome sequence for G. stock-
sii. We compare the G. stocksii genome with resequencing data from a closely related, understudied species (Gossypium somalense) to
generate insight into the relatedness of these cotton species. Finally, we discuss the utility of the G. stocksii genome for understanding
pest resistance in cotton, particularly resistance to cotton leaf curl virus.
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Introduction
The cotton genus, Gossypium, is responsible for providing the
majority of natural textile fiber through the cultivation of its
four domesticated species. While most research and resource de-
velopment is devoted to the two major polyploid crop species,
i.e., Gossypium hirsutum and Gossypium barbadense, the cultivated
diploid species Gossypium herbaceum and Gossypium arboreum com-
prise a significant share of the cotton market in certain countries
(Wendel et al. 1989; Basu 1996; Guo et al. 2006; Khadi et al. 2010;
Kranthi 2018). Native to Africa, these latter two species are nes-
tled within a clade of additional African species that possess
short nonspinnable fiber, but which may be valuable as sources
of various disease and/or stress-resistant traits (Yik and
Birchfield 1984; Rudgers et al. 2004; Nazeer et al. 2014; Rahman
et al. 2017).

Gossypium stocksii is a diploid cotton species native to Eastern
Africa whose subsection, Pseudopambak [E-genome cottons (Wang
et al. 2018)], is thought to be earliest diverging lineage in the
African clade (Wendel and Grover, 2015). E-genome cottons, in-
cluding Gossypium stocksii (E1), Gossypium somalense (E2),
Gossypium areysianum (E3), and Gossypium incanum (E4), may be
sources of valuable traits including disease resistance. While
both G. stocksii and G. somalense have resistance to reniform

nematode (Yik and Birchfield 1984), only G. stocksii has reported
resistance to cotton leaf curl disease (CLCuD) (Nazeer et al. 2014).
Spread by white flies (Briddon and Markham 2000), the virus that
causes CLCuD can have devastating effects on crop yield, as
exhibited by the Pakistan epidemic in the early 1990s (Rahman
et al. 2017), which resulted in massive financial losses over the
course of 5 years. By some estimates, CLCuD is capable of de-
creasing total yield up to 90%, yet none of the major G. hirsutum
cultivars exhibit resistance (Mammadov et al. 2018).

Because G. stocksii germplasm may be a useful source of resis-
tance traits, interspecific material derived from crosses between
G. stocksii and the commercially important G. hirsutum have been
evaluated for a number of traits, including resistance to CLCuD
and possible improvements in fiber. Research has shown that the
F1 generation of a doubled G. stocksii � G. hirsutum cross not only
has resistance to CLCuD but also exhibits increased fiber strength
relative to the parents (Nazeer et al. 2014). More recently, compar-
isons among hexaploid hybrids derived from crosses between
G. hirsutum and other wild diploid species suggests that four wild
diploid species, including G. stocksii, are potentially valuable for
fiber breeding programs (Konan et al. 2020).

Although there has been interest in G. stocksii for breeding pur-
poses, genomic resources are virtually nonexistent for this
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species. Here, we describe a high-quality de novo genome se-
quence for G. stocksii, a valuable source of disease resistance in
cotton and a potential source for improving fiber in domesticated
cotton.

Materials and methods
Plant material and sequencing methods
Mature leaves from G. stocksii (E1) grown under greenhouse condi-
tions at Brigham Young University (BYU) were collected for
PacBio sequencing. A CTAB-based method was used to extract
high-quality DNA (Kidwell and Osborn 1992), which was quanti-
fied on a Qubit Fluorometer (ThermoFisher, Inc.; Waltham, MA,
USA). A BluePippen instrument (Sage Science, LLC; Beverly, MA,
USA) was used to size-select for only fragments >18 kb, as veri-
fied using a Fragment Analyzer (Advanced Analytical
Technologies, Inc; Ankeny, IA, USA). Size-selected DNA was sent
to the BYU DNA Sequencing Center (DNASC; Provo, UT, USA) for
PacBio (Pacific Biosciences; Menlo Park, CA) library construction
and sequencing on a total of 20 PacBio cells. Canu V1.6 was used
to assemble the raw sequencing reads using default parameters
(Koren et al. 2017).

Young leaf tissue was also used for DNA extraction and HiC li-
brary construction (Belton et al. 2012) by PhaseGenomics LLC
(Seattle, WA, USA). These HiC libraries were sequenced on an
Illumina HiSeq 2500 (2 � 125 bp) at the BYU DNASC. Resulting
HiC reads were used to join contigs, and the association fre-
quency between paired-ends was used to correct the assembly
using JuiceBox (Durand et al. 2016). The final genome sequence of
G. stocksii was generated via a custom python script available
through PhaseGenomics LLC, yielding 13 assembled chromo-
somes.

Repeat and gene annotation
Transposable elements (TEs) were annotated using a combina-
tion of RepeatMasker (Smit et al. 2015) and “One code to find
them all” (Bailly-Bechet et al. 2014). A custom library of Repbase
23.04 (Bao et al. 2015) was combined with cotton-specific repeats
(Grover et al. 2020) to mark repeats in the genome using
RepeatMasker. Adjacent matches were merged using “One code
to find them all,” and the output was aggregated and summa-
rized in R/4.0.3 (R Core Team 2017) using dplyr/0.8.1 (Wickham
et al. 2015). All codes are available at https://github.com/
Wendellab/stocksii (last accessed 4/23/2021).

The G. stocksii genome was annotated using existing RNA-seq
data from various tissues of closely related species
(Supplementary Table S1). Specifically, the following tissues were
used: G. arboreum developing seeds and seedling (SRR617075,
SRR617073, SRR617068, SRR617067, and SRR959508), Gossypium
davidsonii roots and leaves (SRR2132267), G. herbaceum seed and
developing fiber (SRR959585, SRR10675236, SRR10675235,
SRR10675234, and SRR10675237), Gossypium longicalyx leaf, stem,
and flower (SRR1174182, SRR1174179, SRR6327757, SRR6327758,
and SRR6327759), Gossypium raimondii leaf, seed, stem, petal, mer-
istem, and floral tissues (SRR617009, SRR617011, SRR617013,
SRR8267554, SRR8267566, SRR8878565, SRR8878526, SRR8878661,
SRR8878800, SRR8878534, and SRR8878745), Gossypium thurberi
leaf, root, and stem (SRR8267623, SRR8267616, and SRR8267619),
and Gossypium trilobum leaf, root, and stem (SRR8267606,
SRR8267582, and SRR8267601). Each library was downloaded
from the Short Read Archive (SRA), and all RNA-seq data were
mapped to the hard-masked G. stocksii genome using hisat2

[v2.1.0] (Kim et al. 2015). BRAKER2 [v2.1.2] (Hoff et al. 2019) was
trained with GeneMark [v4.38] (Borodovsky and Lomsadze 2011)
generated annotations, which were also used to train Augustus
[v3.3.2] (Stanke et al. 2006). StringTie [v2.1.1] (Pertea et al. 2015)
and Cufflinks [v2.2.1] (Ghosh et al. 2016) generated de novo RNA-
seq assemblies were combined with a Trinity [v2.8.6] (Grabherr
et al. 2011) reference-guided assembly and splice junction infor-
mation from Portcullis [v1.2.2] (Mapleson et al. 2018) in Mikado
[v1.2.4] (Venturini et al. 2018). MAKER2 [v2.31.10] (Holt and
Yandell 2011; Campbell et al. 2014) was used to integrate gene
predictions from (1) BRAKER2 trained Augustus, (2) GeneMark,
and (3) Mikado, also using evidence from all Gossypium ESTs
available from NCBI (nucleotide database filtered on “txid3633”
and “is_est”) and a database composed of all curated proteins in
Uniprot SwissProt [v2019_07] (UniProt Consortium 2008) com-
bined with the annotated proteins from the G. hirsutum (https://
www.cottongen.org/species/Gossypium_hirsutum/jgi-AD1_genome_
v1.1, last accessed 4/23/21) and G. raimondii (Paterson et al. 2012)
genomes. SNAP [v2013-02-16] and Augustus were trained with
the predicted annotations from Maker. Maker was run a second
time with the newly trained Augustus and SNAP models, along
with the other inputs from the first iterations. Annotation edit
distance (AED) ( Eilbeck et al. 2009; Holt and Yandell 2011; Yandell
and Daniel 2012) was used to score each gene model relative to
EST and protein evidence, and gene models with an AED <0.35
were retained. Gene models were functionally annotated using
InterProScan [v5.47-82.0] (Jones et al. 2014) and BlastP [v2.9.0þ]
(Camacho et al. 2009) searches against the Uniprot SwissProt
database. Orthologous relationships between G. stocksii and other
diploid cottons were determined via OrthoFinder (Emms and
Kelly 2015, 2019). Proteins from G. longicalyx (Grover et al. 2020), G.
arboreum (Li et al. 2014; Du et al. 2018; Huang et al. 2020), G. herba-
ceum (Huang et al. 2020), G. raimondii (Paterson et al. 2012; Udall
et al. 2019a), G. turneri (Udall et al. 2019a), and G. australe (Cai et al.
2020) were downloaded from CottonGen (https://www.cottongen.
org; Yu et al. 2014, last accessed, 4/23/21) and run using default
parameters. Code is available from https://github.com/
Wendellab/stocksii.

Comparison to G. somalense
Three DNA libraries of G. somalense (E2; SRA: SRR3560160-
SRR3560162), a close relative of G. stocksii (Chen et al. 2016), were
used to provide a preliminary comparison of the two species. Raw
reads were mapped to the newly generated G. stocksii genome
using the Spack (Gamblin et al. 2015) implementation of
bwa v0.7.17-rgxh5dw (Li and Durbin 2009). Single-nucleotide
polymorphisms (SNPs) in G. somalense were called relative to
G. stocksii using the Sentieon pipeline (Kendig et al. 2019)
(Spack version sentieon-genomics/201808.01-opfuvzr), which is
an optimization of existing methods, such as Genome Analysis
ToolKit (GATK) (McKenna et al. 2010). This pipeline included
read deduplication, indel realignment, and genotyping. The
three libraries represent technical replicates of the G. somalense
sequencing and were therefore merged after read deduplica-
tion. Parameters for mapping and SNP calling follow standard
practices, and are available in detail at https://github.com/
Wendellab/stocksii. The resulting variant file was filtered for
read depth using vcftools (Spack version 0.1.14-v5mvhea)
(Danecek et al. 2011), only retaining sites with a minimum of 10
reads and a maximum of 100 reads. GenomeTools (Gremme
et al. 2013) was used to convert the annotation file to gtf format,
which was used in conjunction with SnpEff (Cingolani et al.
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2012) to annotate and predict the effects of the SNP differences
between G. stocksii and G. somalense.

Divergence between the two species was estimated using –
window-pi from vcftools in 100 kb, nonoverlapping windows,
which estimated the average number of differences per window.
Diversity was parsed by region by first intersecting the filtered
VCF with the relevant feature (e.g., exon, intron, etc.) from the
G. stocksii annotation using intersectBed from bedtools2 (Spack
version 2.27.1-s2mtpsu) (Quinlan 2014) to get a list of SNP sites
associated with that region. The original, filtered VCF was then
used in conjunction with vcftools –window-pi and the flag –
positions, which limits the analysis to only the specified sites
(e.g., exon, intron, intergenic). Diversity/divergence results were
parsed in R/4.0.3 using dplyr (Wickham et al. 2015) and plotted
using ggplot2 (Wickham 2016). Relevant code and detailed pipe-
line analysis can be found at https://github.com/Wendellab/
stocksii.

To provide a comparative framework for qualitative interpreta-
tion of the amount of divergence between G. stocksii
and G. somalense, two other species pairs (i.e., G. herbaceum–
G. arboreum and G. raimondii–G. gossypioides) were also subjected to
SNP calling/filtering and calculation of p in 100-kb windows, as out-
lined above for G. stocksii–G. somalense. Here, the genome of G. herba-
ceum (Huang et al. 2020) was used as a reference for G. arboreum
reads (SRR8979980; Page et al. 2013), and G. raimondii (Udall et al.
2019a) was used as a reference for reads from G. gossypioides
(SRR3560148 and SRR3560149). Genomes and annotations were
both downloaded from CottonGen (Yu et al. 2014).

Data availability
The G. stocksii genome sequence is available at NCBI under
PRJNA701967 and through CottonGen (https://www.cottongen.
org/). Raw data are available from the SRA under PRJNA701967.
Supplementary files are available from figshare: https://doi.org/
10.25387/g3.14080361.

Results and discussion
Genome assembly and annotation
We report a high-qualityde novogenome sequence for G. stocksii
covering 93% of the 1531-Mb genome (Hendrix and Stewart 2005).
PacBio reads (58X coverage) were initially assembled into 316
contigs with an N50 of 17.8 Mb. These contigs were then ordered
and oriented using both HiC and Bionano evidence to produce a
chromosome level assembly (n¼ 13) with an average length of

Table 1 BUSCO results for the genome and annotation

Genome Annotation

Complete BUSCOs (C) 2,271 (97.6%) 2,227 (95.8%)
Complete and single-copy

BUSCOs (S)
2,068 (88.9%) 1,888 (81.2%)

Complete and duplicated
BUSCOs (D)

203 (8.7%) 339 (14.6%)

Fragmented BUSCOs (F) 20 (0.9%) 26 (1.1%)
Missing BUSCOs (M) 35 (1.5%) 73 (3.1%)
Total BUSCO groups searched 2,326

Figure 1 Pairwise comparisons of G. stocksii with G. herbaceum (A1; Huang et al. 2020), G. raimondii (D5; Udall et al. 2019a), G. longicalyx (F1; Grover et al.
2020), G. arboreum (A2; Huang et al. 2020), G. turneri (D10; Udall et al. 2019a), and G. australe (G2; Cai et al. 2020).
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110 Mb (1424 Mb total) and containing only 5.7 kb of gap sequence
across all chromosomes. BUSCO (Waterhouse et al. 2018) analysis
of the genome (Table 1) indicates a general completeness with
only 2.4% of BUSCOs either fragmented (0.9%) or missing (1.5%).
Over 97% complete BUSCOs were recovered, most of which were
single copy (88.9%, versus 8.7% duplicated). The LTR Assembly
Index (LAI) (Ou et al. 2018) was also within guidelines for
“reference-quality” genomes (LAI ¼ 10–20; G. stocksii LAI ¼ 15.4),
and dotplots (Figure 1) with existing high-quality cotton genome
assemblies (Paterson et al. 2012; Du et al. 2018; Udall et al. 2019a,
2019b; Grover et al. 2020; Huang et al. 2020) further indicates the
high-quality nature of this genome.

Annotation of the G. stocksii genome revealed 37,889 tran-
scripts representing 34,928 unique genes, similar to other cotton
diploid genomes ( range 37,505 to 43,952; Paterson et al. 2012; Du
et al. 2018; Udall et al. 2019a; Grover et al. 2020; Huang et al. 2020).
BUSCO analysis of the annotation (Table 1) exhibits recovery,
similar to the whole-genome BUSCO. Ortholog analysis between
G. stocksii and these previously published cotton diploids produ-
ces 23,399 orthogroups (Supplementary File S1) containing at
least one G. stocksii gene (range 18,785 in G. australe to 27,913 in
G. arboreum; Huang et al. 2020), comprising 68.5% of the total
orthogroups. Notably, five species-specific orthogroups were re-
covered containing a total of 68 genes (Table 2), 62 of which are
argonaute-like proteins (Supplementary Table S2). On average,
over half of the transcripts (22,403) are placed in a simple 1:1 rela-
tionship in pairwise comparisons between G. stocksii and another
cotton diploid genome (Supplementary Table S3).

TE content was assessed by de novoTE prediction via
RepeatMasker (Bailly-Bechet et al. 2014; Smit et al. 2015), indicat-
ing that repeats occupy �43% of the 1531-Mbp genome (Table 3).
Consistent with other plant genomes, Ty3/gypsy predominate the
G. stocksii genome, comprising over 90% of the detected repetitive
elements. Ty1/copia elements and DNA elements (as a whole)
were substantially less represented, accounting for only 43 and
13 Mb, respectively, in the present analysis.

Comparison of G. stocksii with G. somalense
Gossypium stocksii is part of a clade of approximately seven spe-
cies (subsection Pseudopambak), but relatively little is known
about the members of this subsection, including questions re-
garding species circumscription and the possibility of unrecog-
nized taxa (Fryxell 1979, 1992; Vollesen 1987). A comparison
between Gossypium stocksii and the closely related G. somalenseT
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Table 3 Repeat types and predicted copy numbers in the G.
stocksii genome

Element type Fragments Copies SoloLTR Total_Mb

DNA 15,047 9,190 0 13.37
DNA/EnSpmCACTA 1,138 682 0 2.02
DNA/Harbinger 1 1 0 0.00
DNA/hAT 1,858 1195 0 0.84
DNA/hAT-Tip100 18 11 0 0.02
DNA/L1 923 461 0 1.08
DNA/MarinerTc1 71 39 0 0.05
DNA/MuDR 11,030 6,797 0 9.36
DNA/MULE-MuDR 6 3 0 0.00
DNA/PIF-Harbinger 2 1 0 0.00

LTR 906,998 487,232 269,000 650.36
LTR 34 33 0 0.00
LTR/Copia 45,806 27,117 9,567 42.96
LTR/Gypsy 861,158 460,082 259,433 607.39

Total 922,045 496,422 0 663.73
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Table 4 Comparison of G. somalense resequencing with the G. stocksii genome

Chromosome Length Number of variants Variant rate (%) Average pi

E01 116,888,287 3,307,654 2.83 0.0124
E02 88,432,363 2,545,417 2.88 0.0120
E03 125,861,959 3,604,952 2.86 0.0126
E04 106,357,252 3,070,741 2.89 0.0124
E05 106,784,523 2,598,022 2.43 0.0098
E06 118,523,473 3,312,902 2.80 0.0120
E07 94,613,334 2,855,058 3.02 0.0118
E08 122,663,403 3,390,477 2.76 0.0117
E09 82,831,125 2,285,194 2.76 0.0106
E10 114,014,049 3,343,978 2.93 0.0120
E11 117,232,604 3,111,632 2.65 0.0104
E12 114,623,165 3,068,541 2.68 0.0112
E13 115,591,314 3,227,954 2.79 0.0121
Total 1,424,416,851 39,722,522 2.79 0.0116
Total (genic) 128,641,547 2,578,738 2.00 0.0007

SNP location Number of variants Proportion of variants (%)

Intergenic 37,188,781 93.62
Upstream 5,461,093 13.75

Downstream 5,121,580 12.89
0.00

Exon 831,986 2.09
Missense 471,909 1.19

Silent 352,203 0.89
Nonsense 14,780 0.04

Intron 1,746,752 4.40
UTR, 5’ 63,862 0.16
UTR, 3’ 71,297 0.18

Figure 2 Pairwise comparisons of p for G. somalense and G. stocksii, with G. arboreum vs G. herbaceum and G. gossypioides vs G. raimondii for comparison.
Here, p is calculated individually for each species pair for the entire dataset (all) and for the specified subset of SNPs (i.e., exonic, genic, intragenic, and
intronic). Colors reflect the individual comparisons, with lines to represent the mean and points to represent outliers. Because p is calculated between
two samples each, the values here reflect the pairwise divergence between samples.
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(Supplementary Figure S1) reveals considerable divergence be-
tween these two species, with 39.7 M interspecific SNPs evenly
distributed among the 13 chromosomes (Table 4). As expected,
most of the variation (94% or 37.1 M SNPs) is found in the inter-
genic space, only 30% of which is found near genes (65 kb up- or
down-stream). An assessment of nucleotide distance between G.
stocksii and G. somalense (here measured as p in VCFtools) reveals
a modest distance between these two species (mean p¼ 0.0116;
100-kb windows) that is intermediate between the very closely re-
lated sister species G. arboreum and G. herbaceum (Renny-Byfield
et al. 2016; Huang et al. 2020) and the more distantly related spe-
cies G. gossypioides and G. raimondii (subgenus Houzingenia; Grover
et al. 2019). On a per-chromosome basis, the pairwise G. stocksii–G.
somalense p estimates range from an average of 0.0098 on
chromosome E05 to 0.0126 on chromosome E03 (Figure 2).

Although genic regions have far fewer SNPs, SNPs in these
regions still account for 2.6 M of the 39.7 M total (Table 3). Intron-
based SNPs outweigh exon-based SNPs in a 2:1 ratio, accounting
for 4.4% and 2.1% of the overall SNPs, respectively. Most
exon-based SNPs are minimally disruptive, either conferring
silent (352,203) or missense (471,909) changes (Table 3); very few
(14,780) produced predicted nonsense changes. Similar to other
species pairs in Gossypium, the average nucleotide distance in
genes was far lower than the overall distance (0.007 vs 0.0116, re-
spectively), indicating a close relationship between these two
species in their gene space. Given that G. somalense does not
exhibit the sample level of resistance to CLCuD (Nazeer et al.
2014; Anjum et al. 2015), but does show other forms of pest resis-
tance (Yik and Birchfield 1984; Shim et al. 2018), future compari-
sons including multiple accessions of both species may shed
insight into the evolution of natural pest resistance in cotton
species.

Gossypium stocksii as a resource for disease
resistance
Whereas domesticated varieties of G. hirsutum are highly suscep-
tible to CLCuD (Rehman et al. 2017), G. stocksii exhibits natural
resistance (Nazeer et al. 2014). The molecular basis of CLCuD
resistance in cotton is not well understood (Rahman et al. 2017),
although genetic analyses indicate that CLCuD resistance is likely
controlled by one or few dominant genes with possible epistatic
modifiers (Knight 1948; Ali 1997; Haidar et al. 2003; Rahman et al.
2005; Ahuja et al. 2006), thereby making it a prime target for
breeding programs and/or genetic modification. While the
success of CRISPR/Cas9 in controlling similar viral diseases
and the continued lack of success in controlling CLCuD using
conventional methods (Iqbal et al. 2016) has piqued interest in
genome modification enhancing resistance, little research has
focused on the genomic basis of CLCuD resistance.

Preliminary research in a CLCuD-resistant accession of
G. arboreum identified 1062 differentially expressed genes (DEG)
between challenged and unchallenged plants (Naqvi et al. 2017),
17 of which were considered prime candidates for conferring dis-
ease resistance. Of those 17 genes, 16 were placed in orthogroups
that also contained one or more G. stocksii homologs (Table 5),
with the sole exception of the gene putatively encoding
“phytosulfokines 3” (i.e., Cotton_A_25246_BGI-A2_v1.0), which
plays a role in pathogen response in lotus (Wang et al. 2015). Most
orthogroups were comparable in size between the G. arboreum
genome used to detect DEG and our G. stocksii annotation, aside
from OG0000284 (the cysteine protease ervatamin-B like genes),
which was composed of five tandemly arrayed genes in G. arbor-
eum, but only two in G. stocksii; the relevance of these genes to

CLCuD defense is unclear. The largest orthogroup that contained
one of the top DEG candidates was orthogroup OG0000074, which
is composed of resistance gene (i.e., R-gene) analogs (Naqvi et al.
2017); notably, G. stocksii appears to have one additional copy of
this gene. Similarity at the protein level between the G. arboreum
DEG and its closest G. stocksii homolog is generally high (i.e., 95%,
on average), although it drops as low as 73.4% in the poorly
conserved ervatamin-B like orthogroup (Table 5). These results
indicate that similar genes may operate in CLCuD resistance in
G. stocksii; however, comparative expression data from infected and
uninfected plants are required to understand whether the two
species use similar pathways to avoid infection by the CLC virus.

Conclusion
Cotton leaf curl virus is an important cotton pathogen that
results in thickening and yellowing of small leaf veins, ultimately
leading to the characteristic leaf “curling” phenotype, as well as
stunted growth, delayed onset of flowering and/or fruiting, and
reductions in yield quantity and quality (Rahman et al. 2001;
Farooq et al. 2015; Rehman et al. 2017). Here, we report a genome
sequence for Gossypium stocksii, one of the poorly understood
“E-genome” species, which is also a source of CLCuD resistance.
This resource provides a new foundation for understanding
CLCuD resistance in cotton and represents a new resource for
future evolutionary and taxonomic work in this group of cotton
species.
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